




Al Agent를 활용한 오픈소스 취약점 관리 방안







#### Al Agent for Software Supply Chain Security

- l 오픈소스 관리하기
- Ⅱ 혼돈에서 벗어나기
- III Al Agent 응용하기
- Ⅳ 엑스스캔으로 관리하기



Al Agent를 이용한 오픈소스 취약점 관리 방안

# Chapter I - 오픈소스 관리하기

- 1 통계로 확인하는 오픈소스 이슈
- 2 오픈소스 취약점 이슈
- 3 현실에서 부딪히는이슈
- 3 놓치고 있는 이슈: EOL

#### 통계로 확인하는 오픈소스 이슈 •



95%

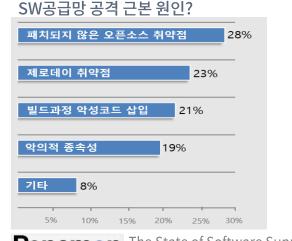
전 세계 기업의 95%가 오픈소스 SW를 사용하고 있음

개발자의 90% 이상이 SW개발시 오픈소스 구성요소에 의존

오픈소스 프로젝트가 폐쇄형보다 코드 품질이 30% 높은 것으로 평가



60%


10,000개 기업 대상 분석된 OSS 라이브러의 60%가 심각한 보안 취약점 내포

조직의 35%가 OSS 구성요소의 업데이트를 1년 이상 지연





Census III of Free and Open Source Software, 2024/12 28%



Poneman The State of Software Supply ChainSecurity Risks. 2024/05

#### 여러분은 오픈소스의 취약점 위협으로부터 안전하다고 확신하십니까?

#### 오픈소스 취약점 이슈 •



# 미국 국립표준기술연구소 국가 취약점 데이터 베이스

National Vulnerability Database

- 2024년 한해 약 4만 건, 누적 총 **298,000건** 이상의 CVE
- 이 중 상당수가 오픈소스 소프트웨어와 관련됨

Critical 13.7%

Medium 55%

△ High 33.5%

Low

4.3%

# 2025년 상반기 레드펜소프트 POC

32개 SW 기준



■ 1개 SW 평균 105개 CVE, 그중 10개 Critical

Critical 10.5%

Medium 50.8%

△ High 35.3%

Low

3.1%

#### 여러분 기업은 어떤 오픈소스를 어느만큼 가지고 있나요?



## 현실에서 부딪히는 이슈 ◆





#### 놓치고 있는 이슈: EOL◦



#### 대표적인 EOL 사례

OpenSSL 1.0.2 : 2019년 12월 31일 EOL

수 많은 시스템(특히 IoT기기)에서 여전히 해당 버전사용 기업은 사용버전을 점검하고 반드시 업그레이드 필요

#### EOL 소프트웨어 관리의 중요성

공격자의 주요 타겟 및 라이선스 이슈

신규 취약점에 영구히 노출되며,컴플라언스 위반 가 능성도 존재함. FDA 제출 SBOM에 기재 권장



#### 왜 소홀히 다뤄지는가?

#### 보안 보다는 운영 관점의 문제로 인식

기능이 종료된다는 운영의 문제로만 인식, 그러나 더 이상 패치를 지원하지 않기에 심각한 보안 리스크 유발

#### EOL 상태의 자동 감지 체계

#### 개발팀만의 문제가 아닌 조직 정책으로

전문 도구를 통해 OSS의 공식지원 여부, 보안 패치 지 원여부에 대한 지속 점검 및 관리체계 필요



Al Agent를 이용한 오픈소스 취약점 관리 방안

# Chapter II - 혼돈에서 벗어나기

1 새로운 접근 : KEV

2 새로운 접근: KEV

3 취약점 관리를 위한 필수 : VEX

4 그래도 부족한 것

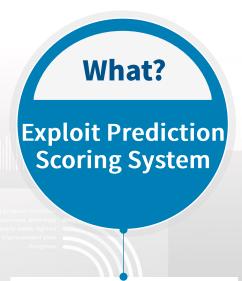
#### 새로운 접근: KEV ○





- 알려진 악용된 취약점
- CVSS 기준 대응이 실제 위협과 연결성이 약하다는 한계 탈피
- 현재실제로야생에서**악용되고 있음이 증명**된 취약점(CVE)
- 전세계기업의60%가일주일에 평균1개의 KEV를 가짐[Bitsight Report, 2024]
- 일반적으로 공식 패치가 있어야 등록 가능




- 미국 국토안보부(DHS)의 CISA가 관장, 각종 정보 제공기관과 협력하여 갱신됨
- **KEV Catalog List로 유지관리** 하며, 주로해당 취약점이 발견된 제품의 CWE 동시 기재
- 2021년 11월 부터 시작, 2023년 187건, 2024년 185건, 2025년 6월 9일 기준 1,360개



- 행정지침 'BOD 22-01'(Reducing the Significant Risk of KEVs)
- 미국연방정부기관은정해진기간 내에취약점에대한패치또는완화 조치를취하고완료를보고해야함
- 일반적으로 2주~3주 Due Date 제시됨
- KEV로 인한 연방 정부 기관의 공격 표면이 79% 감소 효과

#### 새로운 접근: EPSS⊶





- 취약점악용가능성예측
- CVE가 30일 이내 악용될 확률을 예측하는 확률 기반 점수 시스템(0.0001~1)
- Technical Data, Intelligence, Metadata&Disclosure Context, Software Context 등 약 1,400개 이상의 속성을 바탕으로 학습된 기반모델
- KEV가 현재위협이라면, **EPSS는** 미래 위협에 집중



- Forum of Incident Response and Security Team(국제사이버보안 사고대응조직)
- 보안대응조직간의글로벌협업을 촉진하고,정보공유및 CVSS 등 공통표준개발을 주도
- 조직의 보안 우선 대응 순위를 효율적으로 지원하고자
   머신러닝 기반 스코어링 시스템 개발(2019년 최초, 2023년 v3)



- CVSS만보면모두위험한것처럼 보임:실제악용가능성은낮은경우 많음
- SIEM, SOAR등과 연동하여자동 필터링·분류·우선순위 부여활용
- 리스크기반보안대응전략
- KEV와 병행 활용을 추천
- ·KEV ⊅ 즉시대응
- ·EPSS ≥0.7 **⇒** 선제적 대응 검토

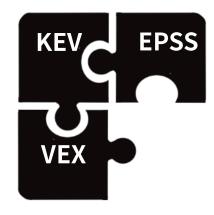
## 취약점 관리를 위한 필수 : VEX ○





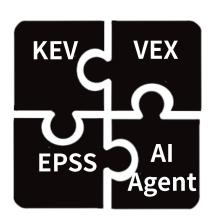
- SBOM에 포함된 SW 구성요소 중 특정 취약점이 악용 가능한지 여부를 명시하는 기계판독(JSON) 가능한 표준 문서 형식(미국 NTIA 제안)
- CVE가 있다고 무조간 위험한 것이 아니다(Justification) 는 사실을 공식적으로 전달하는 목적
- Affeted, Not Affected, Fixed, Under Investigation 4가지 상태
- **불필요한 패치를 최소화** 하기 위한 조치




- SW개발사: 제품에 영향을 주지 않는 취약점을 VEX로 공식 입장
- SW 도입·운영사: 특정 SW의 취약점(특히 KEV, HEV)에 대해 SW개발사에 VEX 요청
- 기업내부보안팀의요청으로 개발자(팀)가발행할수도있음
- 점차적으로 고객사의 요청으로 인한 SW 개발사의 VEX 발행이 일반화될 것으로 예측



- eXchange (상호의견교환)을하기 위해서 **이해관계자들이 참여할** 수있는 플랫폼이 필요
- 'Not Affected'의 상태를 NTIA표준에서는 5가지 정당한 사유(Justification)으로 제시, 그외 CycloneDX VEX, CSAF 등 표준
- SBOM과 VEX는 독립적으로도존재 가능하나 함께 활용하는 것을 권장함


# 그래도 부족한 것 ○















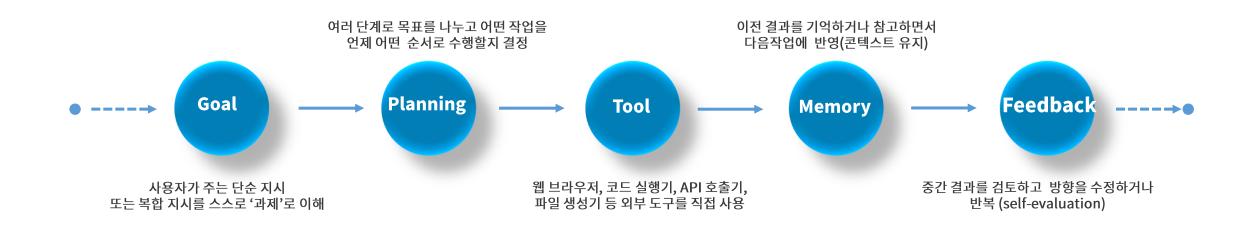




- XSCAN에 KEV,HEV 맵핑 완료
- XSCAN에 VEX 구현(25,Q3예정)
- 기업별 SW자산의 실제 악용 가능성
- 접근성, 방어체계 등 리스크 평가
- 맥락(Context)기반 취약점 관리 노이즈 필터링, 대응방안 가이드
- 차세대 오픈소스 취약점 관리 도구
- SW공급망 보안 관리 전 영역 확대



Al Agent를 이용한 오픈소스 취약점 관리 방안


# Chapter III – Al Agent 응용하기

- 1 Al Agent?
- 2 SW공급망 보안에 Al Agent 응용하기
- 3 취약점 관리에 AI Agent 응용하기

### Al Agent? •







# SW공급망 보안에 Al Agent 응용하기 ◦

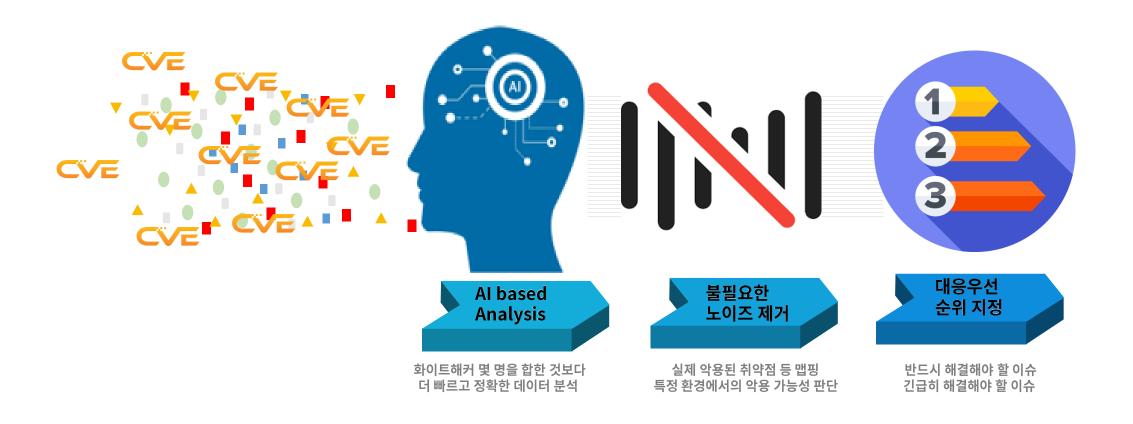




오픈소스 취약점 대응 및 가이드 제공

SW공급망 보안 대응의 우선순위 지정

이해관계자와의 자동화 커뮤니케이션


버전간 SBOM 비교분석 등 관리 자동화

문제해결을 위한 워크플로우 지원

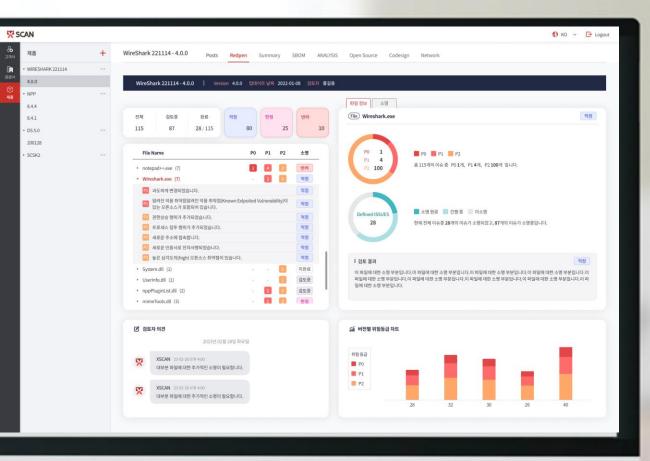


# 취약점 관리에 AI Agent 응용하기 ◦








Al Agent를 이용한 오픈소스 취약점 관리 방안

# Chapter IV -엑스스캔으로 관리하기

- 1 엑스스캔
- 2 모든 파일 포맷 지원
- 3 End-to-End 공급망 보안 플랫폼
- 4 오픈소스 분석
- 5 엑스스캔 차별점
- 6 엑스스캔 도입효과

#### 엑스스캔(









■ 오픈소스 취약점 등 SW공급망 보안





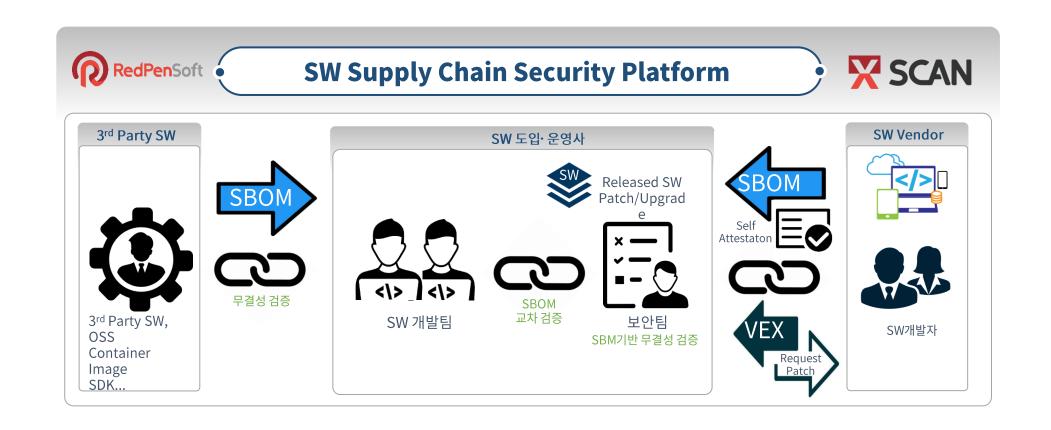
■ SW 구성 컴포넌트에 대한 SBOM





■ AI Agent에 기반한 맥락 기반 대응

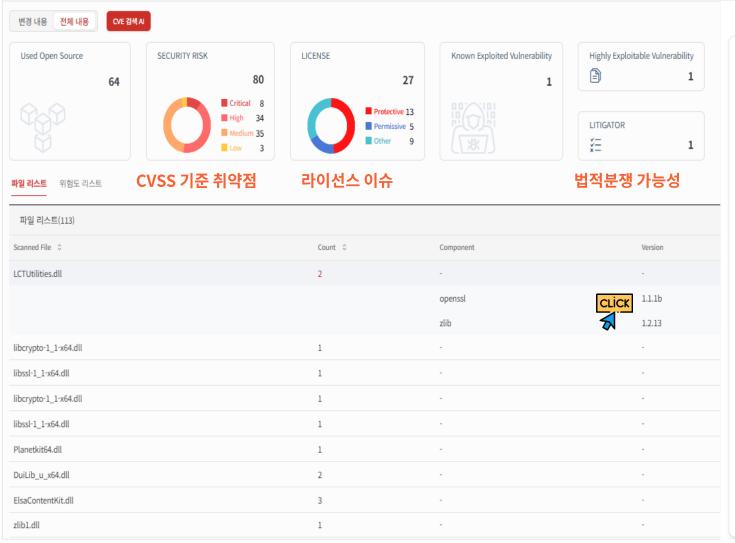
## 모든 파일 포맷 지원 🍑




# ☑ 모든 코드, 모든 포맷, 모든 플랫폼을 위한 SBOM 생성 지원

| Programming<br>Laguages                                                   | File Systems                                                                          | Binary Formats                                                                                                           | Firmware Formats                                                                                          | Installation Formats                            | Compressin/<br>Archive Formats                                  |
|---------------------------------------------------------------------------|---------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|-------------------------------------------------|-----------------------------------------------------------------|
| C C++ C# Go Java JavaScript TypeScript Kotlin Python Ruby PHP Rust R Dart | Docker Android Sparse Cramfs Ext2/3/4 ISO JFFS2 Minix RomFS Squashfs UBIFS Yaffs2 WIM | Native binaries (ELF, PE, Mach-O) Java binaryies (APK, Java class, dex/odex, aar, jar, war) Linux kernel Base64 bFLT ipa | Intel Hex SREC uboot RedBoot Aris firmware Juniper firmware Kosmos firmware QNX firmware VxWorks firmware | MSI<br>Deb<br>RPM<br>InstallShield<br>InnoSetup | 7z Ar Arj bzip2 cab cpio gzip lrzip lzip lzma lzop rar rzip tar |
|                                                                           |                                                                                       | 01011 11010                                                                                                              | FW                                                                                                        |                                                 | upx<br>xar<br>xz<br>z<br>zip<br>lz4<br>zst                      |

#### End-to-End 공급망 보안 플랫폼 ◦






#### 오픈소스 분석: 3 Level Drill Down •



#### 



#### AI 분석

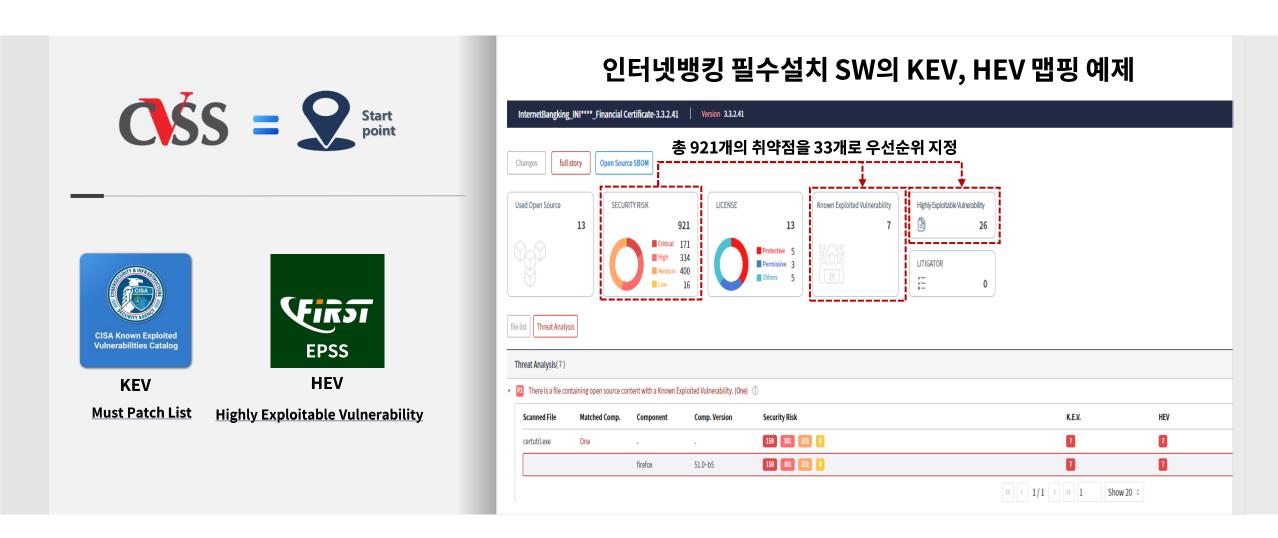
CVE-2022-2068은 OpenSSL의 c\_rehash 스크립트에서 발생하는 취약점으로, 이 스크립트가 쉘 메타문자를 적절히 처리하지 않아 명령어 주입이 가능하게 되는 문제입니다. 이로 인해 공격자는 스크립트의 권한으로 임의의 명령어를 실행할 수 있습니다. 이 취약점은 OpenSSL 3.0.0부터 3.0.3, 1.1.1부터 1.1.1o, 1.0.2부터 1.0.2ze 버전에 영향을 미치며, OpenSSL 3.0.4, 1.1.1p, 1.0.2zf에서 수정되었습니다.

다음은 이 취약점으로 인해 발생할 수 있는 위협과 대용책을 요약한 표입니다.

#### 위협 요약

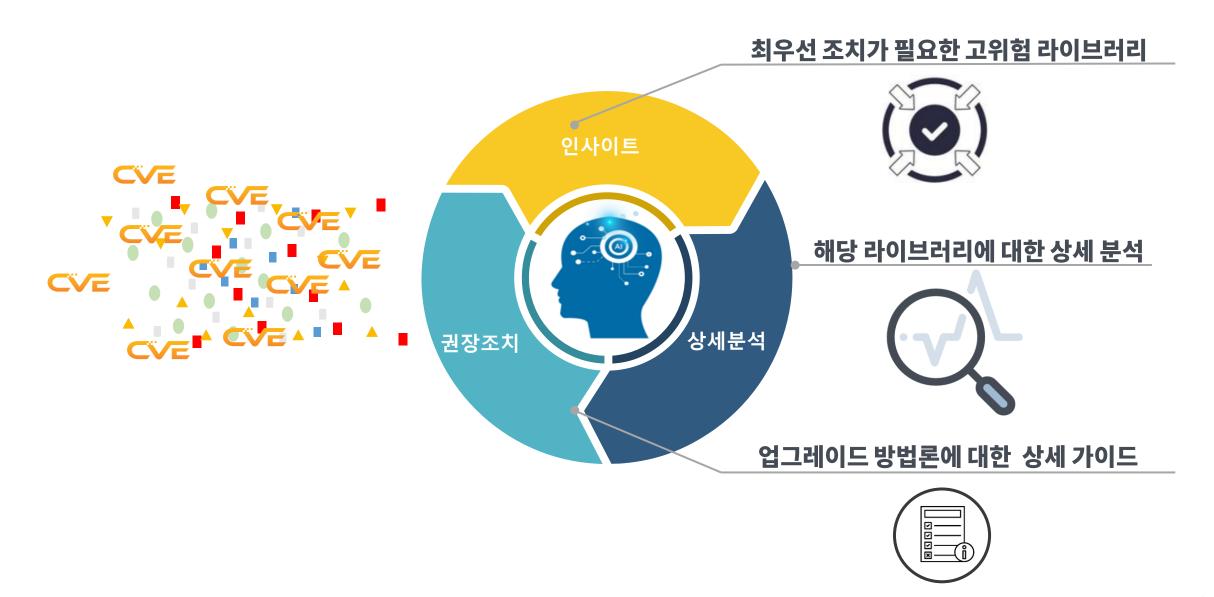
| 위협 요소  | 설명                                  |
|--------|-------------------------------------|
| 기밀성 손상 | 공격자가 민감한 데이터를 탈취할 수 있음              |
| 무결성 손상 | 공격자가 시스템 파일이나 데이터를 변조할 수 있음         |
| 가용성 손상 | 공격자가 시스템을 중단시키거나 서비스 거부 상태로 만들 수 있음 |

#### 대응책 및 요청 사항


주기적으로 확인하여 시스템을 안전하게 보호해야 합니다.

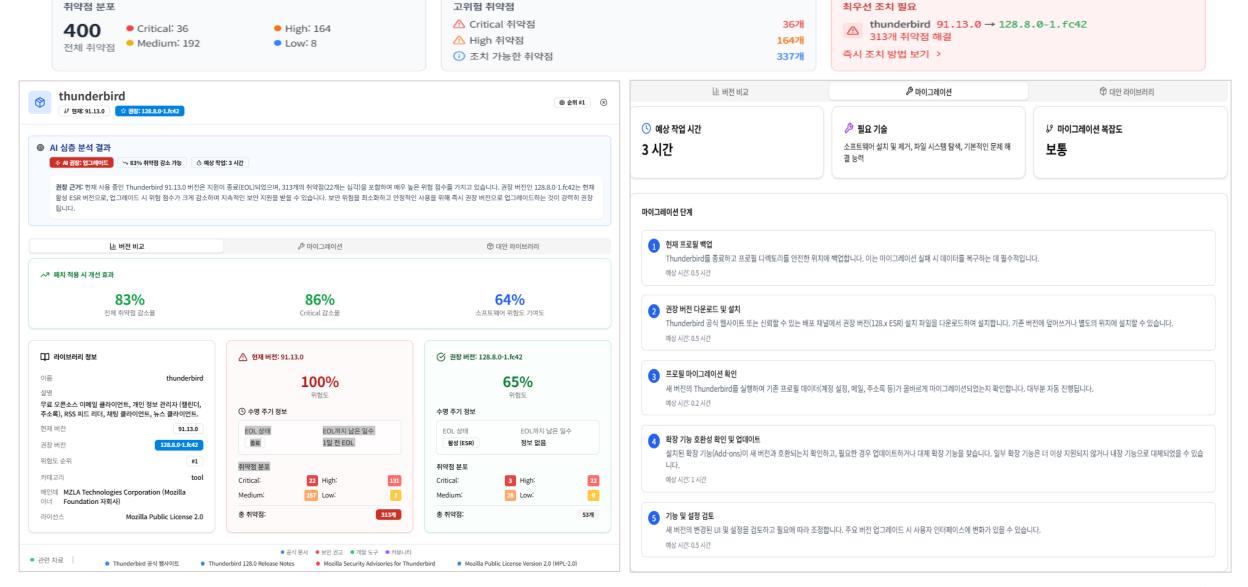
| 대응책                                                                                        | 설명                                            |  |  |  |
|--------------------------------------------------------------------------------------------|-----------------------------------------------|--|--|--|
| 소프트웨어 업데이트                                                                                 | OpenSSL을 최신 버전(3.0.4, 1.1.1p, 1.0.2zf)으로 업데이트 |  |  |  |
| c_rehash 스크립트 사용 중지                                                                        | c_rehash 스크립트 대신 OpenSSL rehash 명령어 사용        |  |  |  |
| 시스템 모니터링 강화                                                                                | 비정상적인 명령 실행을 탐지하기 위한 로그 모니터링 및 경고 시스템 설정      |  |  |  |
|                                                                                            |                                               |  |  |  |
| 공급업체 요청 사항                                                                                 | 설명                                            |  |  |  |
| 패치 제공                                                                                      | 취약점이 수정된 패치를 신속히 제공                           |  |  |  |
| 보안 공지                                                                                      | 취약점에 대한 상세 정보와 대응 방법을 포함한 보안 공지 발행            |  |  |  |
| 고객 지원                                                                                      | 취약점 대응에 대한 고객 지원 및 가이드 제공                     |  |  |  |
| 이와 같은 조치를 통해 CVE-2022-2068 취약점으로 인한 위협을 최소화할 수 있습니다. 고객은 소프트웨어를 최신 버전으로 유지하고, 공급업체의 보안 공지를 |                                               |  |  |  |

## 오픈소스 분석: KEV, HEV 맵핑 ○




#### ₫ 반드시, 그리고 긴급히 대응해야 하는 오픈소스 취약점 맵핑

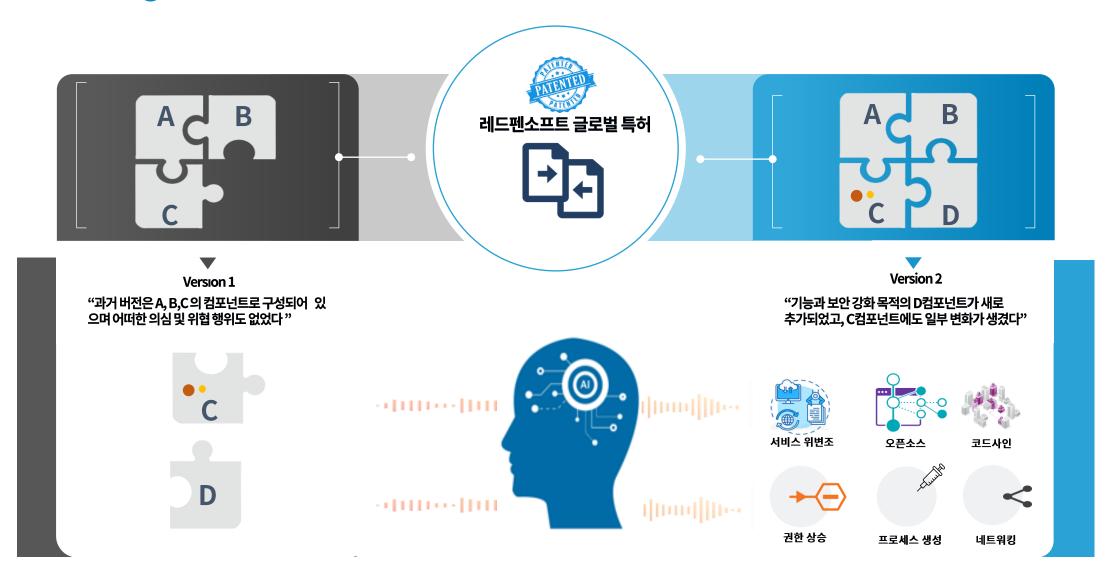



# 오픈소스 분석: AI Agent 활용 Flow ○





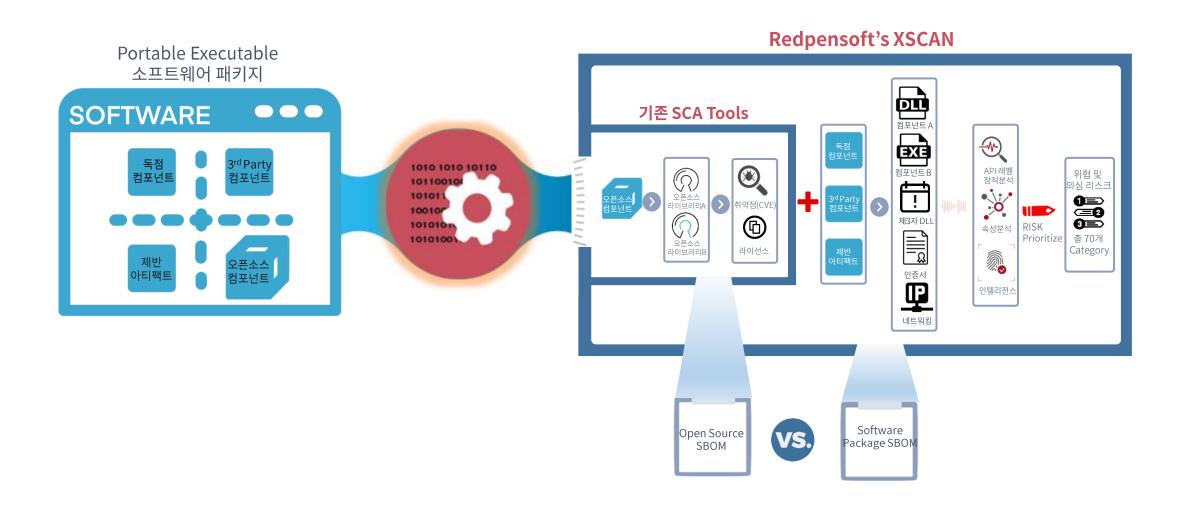
## 오픈소스 분석: AI Agent 활용 예시 ○






#### 엑스스캔 차별점: 변화도 비교 추적 ○

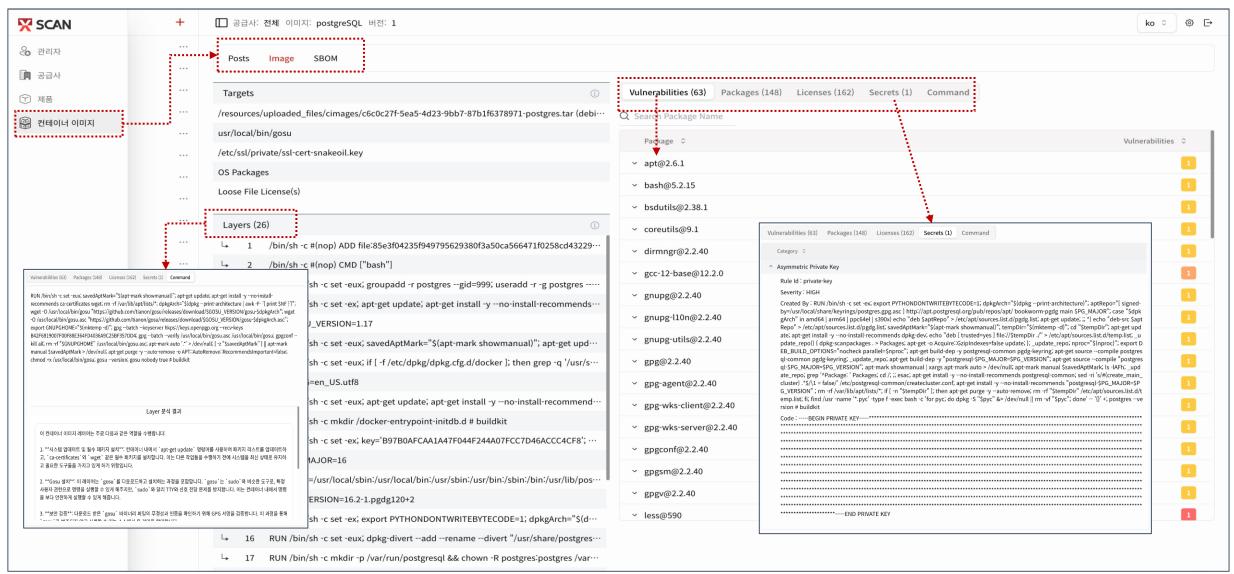



#### ○ 이전 버전 대비 변화도를 AI 기반으로 추적하여 컴포넌트 레벨의 의심 및 위협 요인 판별



## 엑스스캔 차별점 : PE파일 특화분석 ◆




### 



#### 엑스스캔 차별점 : 컨테이너 이미지 분석 ~



#### ○ 컨테이너 이미지의 레이어, 취약점과 숨겨진 비밀(Secret)을 제시



#### 엑스스캔 도입효과 ◆



#### 



'A' SW 'B' SW 'C' SW

V1 SBOM
V2 SBOM

**SBOM** Repository

#### 01 SW 개발 과정 리스크 관리



#### 02 도입 및 운영SW 리스크관리



#### 03 SW 투명성 및 신뢰성 확보



#### <sub>04</sub> 보안 사고 시 · 증적 제공



- SW 개발시 활용되는 모든 오픈소스 컴포넌트 검증
- 특히 SaaS 기반 등 서비스를 위한 컨테이너 이미지 및 3<sup>rd</sup> Party SW
- 개발자(팀)이 놓칠 수 있는 제반 아티팩트 등에 대해 교차 검증

- 반입 SW 내 오픈소스 취약점 및 License 이슈 관리 자동화
- 공급사 벤더와의 커뮤니케이션 및 취약점 조치 이력 DB화
- 제2의 로그포제이 발생시 빠른 대처

- 기존 버전 기준 SW 관리를 SW 컴포넌트 단위로 리포지토리화
- 납품·운영 과정에서 고객사에서 SBOM 요구시 신뢰성 있는 조치
- 취약점 및 리스크 대응 순위에 대한 상호 커뮤니케이션

- 특정 구성요소가 있는 모든 SW 확인하여 사고 영향 범위 분석
- 구성요소의 출처와 변경 내용에 대한 추적으로 유사문제 발생 예방
- 사고 발생시 규제 당국이나 고객에 증적 자료 제출

# **XSCAN POC Proposal**



- SW공급망 공격! 안전하다고 자신할 수 있습니까?
- 새로운 서비스! 구축 혹은 도입을 준비하십니까?

01 기업의 인프라에 아무것도 설치되는 것이 없습니다.

02 대상 SW를 업로드 후 리포트를 보시면 됩니다.

03 POC에 소요되는 시간은 딱 하루면 됩니다.





Time to Protect Your Software

Q&A